MTG CLASS 12 **CHEMISTRY FORMULA** BOOK

THE SOLID STATE

- Calculation of number of particles per unit cell
- Contribution of each atom present on the corner = $\frac{1}{8}$
- Contribution of each atom present on the face = $\frac{1}{2}$

- Contribution of each atom present on the edge centre = $\frac{1}{4}$
- Contribution of each atom present at the body centre = 1
- Relation between radius (r) of a void and æ the radius (R) of the spheres in the close packing
- Radius (r) of the tetrahedral void = 0.225R
- Radius (r) of the octahedral void = 0.414R

Radius ratio rules æ

Radius ratio	Coordination	Structural
(r_{+}/r_{-})	Number	arrangement
0.155-0.225	3	Planar
		triangular
0.225-0.414	4	Tetrahedral
0.414-0.732	6	Octahedral
0.732-1	8	Body-centred
		cubic

- Relation between no. of voids and spheres æ in the packing
- No. of octahedral voids = No. of atoms (ions) present in the close packing.
- No. of tetrahedral voids = $2 \times No.$ of atoms (ions) in the close packing

= 2 × No. of octahedral voids.

Relation between nearest neighbour æ distance (d) and edge (a) of cubic unit cell

Chemistry

 $d = \frac{\sqrt{3}}{2}a = 0.866 a$ Body-centred

d = a

- $d = \frac{a}{\sqrt{2}} = 0.707 \ a$ Face-centred
- Relation between atomic radius $r = \frac{d}{2}$ for Ŧ pure elements) and edge (a) of cubic unit cell

Simple	Body-centred	Face-centred
$r = \frac{a}{2}$	$r = \frac{\sqrt{3}}{4}a$	$r = \frac{a}{2\sqrt{2}}$
	= 0.433 <i>a</i>	$= 0.3535 \ a$

Calculation of density of a cubic crystal from æ its edge

$$\rho = \frac{Z \times M}{a^3 \times N_0 \times 10^{-30}} \text{ g/cm}^3$$

For elements:

Z = no. of atoms/unit cell (1 for simple, 2for *bcc* and 4 for *fcc*) M = atomic mass of the element a = edge of the unit cell in pm N_0 = Avogadro's number.

For ionic compounds:

Z = no. of formula units in one unit cell e.g. 4 for NaCl and ZnS, 1 for CsCl, etc. M = formula mass (molecular mass) of the compound $a = edge = 2 \times distance between Na^{+} and$ Cl⁻ in case of NaCl.

- Ionic and covalent radii : æ
- Interionic distance in $A^+B^- = r_{A^+} + r_{B^-}$
- Bond length of a covalent molecule $(A-A) = 2 \times r_A$ Bond length of a covalent molecule
- $(A-B) = r_A + r_B$

No. of cation vacancies: Each ion like Sr²⁺ when introduced into Na⁺Cl⁻ creates one cation vacancy because for electrical neutrality, one Sr^{2+} replaces two Na⁺ ions.

SOLUTIONS

% by wt. = $\frac{\text{wt. of the solute in g}}{\text{wt. of the solution in g}} \times 100$
% by wt./vol. = $\frac{\text{wt. of solute in g}}{\text{Vol. of solution in cc}} \times 100$
% by volume = $\frac{\text{Vol. of solute in cc}}{\text{Vol. of solution in cc}} \times 100$
Strength of a solution = $\frac{\text{wt. of the solution in g}}{\text{Vol. of solution in litres}}$
Molarity = $\frac{\text{Moles of the solute}}{\text{Vol. of solution in cc}} \times 1000$
where moles = $\frac{\text{Mass of the solute in g}}{\text{Molecular mass of the solute}}$
Normality = $\frac{\text{g. Eq. of the solute}}{\text{Vol. of solution in cc}} \times 1000$
where g eq. = $\frac{\text{Mass of the solute in g}}{\text{Eq. mass of the solute}}$

$$\Box \quad \text{Normality of a solution} = \text{Molarity} \times \frac{\text{Mol. mass}}{\text{Eq. mass}}$$

- Normality of an acid = Molarity × Basicity
- Normality of a base = Molarity × Acidity

$$\square \quad \text{Molality} = \frac{\text{Moles of solute}}{\text{Mass of the solvent in g}} \times 1000$$

Mole fraction of solute in solution

$$(x_2) = \frac{n_2}{n_1 + n_2} = \frac{w_2/M_2}{w_1/M_1 + w_2/M_2}$$

Mole fraction of solvent in solution

$$(x_1) = \frac{n_1}{n_1 + n_2} = \frac{w_1/M_1}{w_1/M_1 + w_2/M_2}$$

where $w_{1'}$, M_1 are mass and molecular mass of solvent and $w_{2'} M_2$ for the solute. $x_1 + x_2 = 1$.

In general, for a solution containing many components (A, B, C....), mole fraction of A.

$$(x_A) = \frac{n_A}{n_A + n_B + n_C + \dots}$$
 and so on.
$$x_A + x_B + \dots = 1$$

Mass fraction of component $A(x_A) = \frac{w_A}{w_A + w_B}$

Mass fraction of component $B(x_B) = \frac{w_B}{w_A + w_B}$

- $x_A + x_B = 1$ Parts per million (ppm) of substance A $\frac{\text{Mass of } A}{\text{Mass of solution}} \times 10^6 \text{ or } \frac{\text{Vol. of } A}{\text{vol. of solution}}$ $-\times 10^{6}$
- Normality equation (for dilution of a solution or for a complete reaction between two solutions)

$$N_1V_1 = N_2V_2$$
.

- Molarity equation (for dilution of a solution) $M_1V_1 = M_2V_2$.
- If two non-reacting solutions of different normalities are mixed, the normality of the final solution can be calculated using relations :

$$N_1V_1 + N_2V_2 = N_3V_3.$$

- According to Henry's law : $p_A = k_H x_A$ where k_{H} = Henry's constant
- According to Raoult's law, for a solution containing volatile components A and B, $p_A = x_A p_A^{\circ} \text{ and } p_B = x_B p_B^{\circ}.$ $P_{\text{Total}} = p_A + p_B = x_A p_A^{\circ} + x_B p_B^{\circ}$ $= (1 - x_B) p_A^{\circ} + x_B p_B^{\circ} = (p_B^{\circ} - p_A^{\circ}) x_B + p_A^{\circ}.$

Mole fraction of A in the vapour phase

$$= \frac{p_{\rm A}}{p_{\rm A} + p_{\rm B}}$$

Raoult's law for non-volatile solutes :

$$\frac{p^{\circ} - p_{\circ}}{p^{\circ}} = \frac{n_2}{n_1 + n_2} \approx \frac{n_2}{n_1}$$
(if solution is dilute *i.e.* < 5%)
$$= \frac{w_2/M_2}{w_1/M_1 + w_2/M_2} \approx \frac{w_2/M_2}{w_1/M_1}$$
(if solution is dilute)

- Osmotic pressure, $\pi = \frac{n}{V}RT$ where $n = \frac{w}{M}$
- For isotonic solutions, $\pi_1 = \pi_2$ which means at the same temp. $C_1 = C_2$.
- Elevation in boiling point, $\Delta T_{h} = K_{h}m$ where K_{h} = molal elevation constant and m = molality of the solution.
- Units of $K_b = \Delta T_b/m = \text{deg./molality} = \frac{1}{\text{mol kg}^{-1}}$ = K kg mol^{-1} .

Chemistry

 $\square \quad M_2 = \frac{1000 K_b w_2}{w_1 \Delta T_b} \text{ if } K_b \text{ is molal elevation}$ constant per 1000 g of the solvent. However if K_b is per 100 g of the solvent,

$$M_2 = \frac{100 K_b w_2}{w_1 \Delta T_b}$$

□ Depression in freezing point, $\Delta T_f = K_f m$ where K_f = molal depression constant and m = molality of the solution.

$$\Box$$
 Units of K_f = same as those of K_b .

$$\square \quad M_2 = \frac{1000 \, K_f \, w_2}{w_1 \, \Delta T_f} \text{ if } K_f \text{ is per 1000 g of the}$$

solvent or $M_2 = \frac{100 K_f w_2}{w_1 \Delta T_f}$ if K_f is per 100 g of the solvent.

$$\Box \quad K_b = \frac{RT_0^2}{1000 \, l_v} = \frac{M_1 RT_0^2}{1000 \, \Delta H_v}$$

where T_0 = boiling point of the liquid (pure solvent) l_v = latent heat of vaporisation per g of the solvent ΔH_v = latent heat of vaporisation per mole of the solvent. M_1 = molecular mass of the solvent.

 $R = \text{gas const.} = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ if } I_v \text{ or } \Delta H_v \text{ is in calories.}$

$$\Box \quad K_f = \frac{RT_0^2}{1000 \ l_f} = \frac{M_1 RT_0^2}{1000 \ \Delta H_f}$$

where T_0 = freezing point of the liquid (pure solvent) l_f = latent heat of fusion per g of the solvent

 ΔH_f = latent heat of fusion per mole of the solvent

 M_1 = molecular mass of the solvent R = gas const. 8.314 JK⁻¹ mol⁻¹.

Van't Hoff factor (i) = Observed value of Colligative property Calculated value of Colligative property

$$= \frac{\text{Calculated mol. mass}}{\text{Observed mol. mass}} = \frac{M_c}{M_0}$$

For solutes undergoing dissociation/ association

 $\Delta T_{b} = iK_{b}m, \ \Delta T_{f} = i \ K_{f}m, \ \pi = i \frac{n}{V} RT$

□ For an electrolyte $A_x B_y$ undergoing dissociation with degree of dissociation α . $A_x B_y \rightleftharpoons xA^+ + yB^-$ Before dissociation 1 mole 0 0 After dissociation 1 - α x α ya Total = 1 - α + x α + y α = $\alpha(x + y - 1)$ + 1. $i = \alpha(x + y - 1)$ + 1 or $\alpha = \frac{i - 1}{x + y - 1}$

 $\Box \quad \text{For a solute } A \text{ undergoing association} \\ n A \rightleftharpoons A_n$

Initial 1 mole After assoc. $1 - \alpha$ (α/n)

Total =
$$1 - \alpha + \frac{\alpha}{n}$$

 $i = 1 - \alpha + \frac{\alpha}{n}$ or $\alpha = \frac{i-1}{n-1}$

ELECTROCHEMISTRY

□ According to Ohm's law (Resistance),

$$R = \frac{V}{I} = \frac{\text{volt}}{\text{amperes}} = \Omega$$
 (ohm)

□ Conductance (*C*) = $\frac{1}{R}$ = Ohm⁻¹ or Mho or Siemens (S)

- $\square \quad R = \rho \times \frac{l}{a}$
 - where l = distance between electrodes in cm, *a* = area of cross-section of electrodes in cm²

 ρ = specific resistance, where $\frac{l}{a} = \frac{R}{\rho}$ cell constant (cm⁻¹)

 $\Box \quad \text{Specific conductance, } \kappa = \frac{1}{\rho} \text{ or } \\ \kappa = \frac{1}{2} \cdot \frac{l}{\rho} = C \times \text{cell constant}$

$$R = R = 0 \times \operatorname{cen} \operatorname{constant}^{-1}$$

= ohm⁻¹ cm⁻¹ or S cm⁻¹

□ Equivalent conductance,

$$\Lambda_{eq} = \kappa \times V = \frac{\kappa \times 1000}{C_{eq}} = \frac{\kappa \times 1000}{\text{normality}}$$

Unit = $ohm^{-1} cm^2 g equi^{-1} or S cm^2 g equi^{-1}$ \Box Molar conductance,

$$\Lambda_m = \kappa \times V = \frac{\kappa \times 1000}{C_m} = \frac{\kappa \times 1000}{\text{molarity}}$$

Unit = ohm⁻¹ cm² mol⁻¹ or S cm² mol⁻¹

□ For a sparingly soluble salt *e.g.* AgCl, $BaSO_{4'}$ etc.

Solubility (mol l^{-1}) = $\frac{\kappa \times 1000}{\Lambda^{\circ}_{m}}$

- □ Debye Huckel-Onsager equation is $\Lambda_m = \Lambda_m^\circ - b\sqrt{C}$ [Λ_m = molar conductivity at *C* concentration, Λ_m° is molar conductivity at infinite dilution, *b* = constant.]
- □ According to Kohlrausch's law molar conductance $\Lambda_m^{\circ} = x \lambda_c^{\circ} + y \lambda_a^{\circ}$ where λ_c° and λ_a° are molar conductivities of cation and anion respectively. Equivalent conductance at infinite dilution

$$\Lambda_{eq}^{\infty} = \lambda_c^0 + \lambda_c^0$$

- Degree of dissociation $\alpha = \frac{\Lambda_m^c}{\Lambda_m^o}$ = $\frac{\text{Molar conductance at a given concentration}}{\text{Molar conductance at infinite dilution}}$
- Molar conductivity at infinite dilution for weak electrolytes

$$e.g.\Lambda^{\circ}_{CH_{3}COOH} = \Lambda^{\circ}_{CH_{3}COONa} + \Lambda^{\circ}_{HCI} - \Lambda^{\circ}_{NaCI}$$

□ Faraday's first law: Weight of the substance liberated at anode

w = ZIt = ZQ, Z = electrochemical equivalent, I = current passed for time t seconds

□ Faraday's second law :

 $\frac{\text{wt. of metal } A}{\text{wt. of metal } B} = \frac{\text{Eq. wt. of } A}{\text{Eq. wt. of } B}$

- \Box 1 F = 96500 C
- $\Box \quad \text{Electrochemical equivalent of a substance} \\ = \frac{\text{atomic weight}}{n \times 96500} = \frac{\text{Eq. wt. of the substance}}{96500}$
- $\Box \quad E_{\text{cell}} = E^{\circ}_{\text{cathode}} E^{\circ}_{\text{anode}}$

$$\Box \quad E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{[\text{Reduced state}]}{[\text{Oxidised state}]}$$

 ${}^{\mbox{\tiny \ensuremath{\mathcal{S}}}}$ For the cell : $aA + bB \rightarrow xX + yY$;

$$\Box \quad E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{[X]^{x} [Y]^{y}}{[A]^{a} [B]^{b}} \text{ at } 25^{\circ}\text{C}$$

$$\Delta G^{\circ} = -nFE^{\circ} \text{ (in standard state)}$$
$$\Delta G^{\circ} = -RT \ln K = -2.303 RT \log K$$

$$\Box \qquad E^{\circ}_{\text{cell}} = \frac{RT}{nF} \ln K = \frac{2.303RT}{nF} \log K$$
$$= \frac{0.0591}{n} \log K \text{ at } 25^{\circ}\text{C}$$

Thermodynamic efficiency
$$\eta = \frac{\Delta G}{\Lambda H} = -\frac{hFE}{\Lambda H}$$

 $\Box \quad \Delta G_3^\circ = \Delta G_1^\circ + \Delta G_2^\circ \quad \text{(when different number of electrons are involved)} \\ -n_3 F E_3^\circ = -n_1 F E_1^\circ - n_2 F E_2^\circ \\ n_3 E_3^\circ = n_1 E_1^\circ + n_2 E_2^\circ$

or
$$E_3^{\circ} = \frac{n_1 E_1^{\circ} + n_2 E_2^{\circ}}{n_3}$$

If $n_1 = n_2 = n_{3'} E_3^{\circ} = E_1^{\circ} + E_2^{\circ}$

□
$$E_{\text{H}^+/\text{H}_2} = E_{\text{H}^+/\text{H}_2}^{\circ} - 0.0591 \log \frac{1}{[\text{H}^+]}$$

= 0 - 0.0591(-log[H^+]) = -0.0591 pH
 \therefore pH = -log[H^+]
As pH of the solution increases, elect

As pH of the solution increases, electrode potential of hydrogen electrode decreases.

□ For concentration cell
$$Zn \mid Zn^{++} \parallel Zn^{++} \mid Zn^{++} \mid Zn$$

$$E_{\text{cell}} = \frac{0.0591}{2} \log\left(\frac{C_2}{C_1}\right)$$

For gas concentration cell $Pt(H_2) | HCl | Pt(H_2)$ $P_1 P_2$

$$E_{\text{cell}} = 0.0591 \log \frac{P_2}{P_1}$$

Relation between free energy and cell potential

Type of reaction	ΔG	Ε	Type of cell
Spontaneous	-ve	+ve	Galvanic
Non-spontaneous	+ve	-ve	Electrolytic
Equilibrium	0	0	Dead
			battery

CHEMICAL KINETICS

For the reaction $x \to y$

□ Rate of disappearance of
$$x = -\frac{d[x]}{dt}$$

□ Rate of formation of $y = \frac{d[y]}{dt}$

Chemistry

• For the reaction $x + y \rightarrow 2z$

$$\Box \quad \text{rate} = -\frac{dx}{dt} = -\frac{dy}{dt} = \frac{1}{2}\frac{dz}{dt}$$

For a reversible reaction at equilibrium,

 $\left(\frac{dx}{dt}\right)_{\text{forward}} = \left(\frac{dx}{dt}\right)_{\text{backward}}$

The overall rate of reaction,

$$\frac{dx}{dt} = \left(\frac{dx}{dt}\right)_{\text{forward}} - \left(\frac{dx}{dt}\right)_{\text{backward}} = 0$$

- $\Box \quad \text{Average rate} = \frac{\text{Change in concentration}}{\text{Time interval}} = \frac{\Delta x}{\Delta t}$
- **D** For zero order reactions, $k = \frac{x}{t}$; $t_{1/2} = \frac{a}{2k}$
- □ For reactions of 1st order, $k = \frac{2.303}{t} \log \frac{a}{a-x}$ where *a* is the initial concentration of the reactant and *t* is the time in which amount *x* has reacted.
- □ Expression for half-life period for reactions of 1st order $t_{1/2} = \frac{0.693}{k}$. as $T = n \times t_{1/2}$ where T = total time at $T = T_{75} x = 3/4 a$ (a - x) = a/4 $\therefore T_{75} = 2 \times T_{50}$ and $T_{87.5} = 3 \times T_{50}$ $T_{99.9} = 10 \times T_{50}$

D For a second order reaction $k = \frac{1}{t} \cdot \frac{x}{a(a-x)}$

□ Half-life period for a second order reaction $t_{1/2} = \frac{1}{ka}$

□ For a third order reaction $k = \frac{1}{t} \cdot \frac{x}{2a^2} \frac{(2a-x)}{(a-x)^2}$ and half-life period for the third order reaction $t_{1/2} = 3/2ka^2$

- General expression for half-life period of a reaction of *n*th order $t_{1/2} \propto [A_0]^{1-n}$ or $t_{1/2} \propto \frac{1}{[A_0]^{n-1}}$
- □ General expression for time taken for *n*th fraction of a reaction of 1st order to complete

(by putting $x = \frac{a}{n}$, $t = t_{1/n}$); $t_{1/n} = \frac{2.303}{k} \log \frac{n}{n-1}$ Amount of the substance left

Amount of the substance left after *n* halflives = $\frac{[A]_0}{2^n}$

□ Arrhenius eqn. for effect of temperature on rate constant $k = Ae^{-E_a/RT}$ or $\ln k = \ln A - \frac{E_a}{RT}$ or $\log k = \log A - \frac{E_a}{2.303 RT}$

or, $\frac{d \ln k}{dT} = \frac{E_a}{RT^2}$, where *k* is rate constant, pre-exponential factor *A* is collision frequency, E_a is activation energy, *T* is temperature in K and *R* is gas constant. If k_1 and k_2 are rate constants at temperatures T_1 and T_2 respectively, then

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

SURFACE CHEMISTRY

$$\left(\frac{x}{m}\right) = k(p)^{1/n}$$

or $\left(\frac{x}{m}\right) = k(c)^{1/n}$

where, x = amount of adsorbate

m = gram of adsorbent at pressure

c = concentration

k and n are constant, n > 1.

Langmuir adsorption isotherm,

$$\frac{x}{m} = \frac{aP}{1+bP}$$

where a and b are constants. x/m and P are the terms similar to those expressed in Freundlich isotherm.

- At low pressure, $\frac{x}{m} = aP$
- At high pressure, $\frac{x}{m} = \frac{a}{b}$

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

Summary of the Extraction of Metals

Metal	Main Occurrence	Main Method of Extraction	
Magnesium	Carnallite, KCl·MgCl ₂ ·6H ₂ O	Electrolysis of fused MgCl ₂ with KCl	
Aluminium	Bauxite, Al,O ₃ ·2H ₂ O	Electrolysis of Al ₂ O ₃ in molten Na ₃ AlF ₆ (cryolite)	
Iron	Haematite, Fe ₂ O ₃	Reduction of oxide with carbon monoxide	
	Magnetite, Fe_3O_4	$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$	
Copper	Copper pyrites, CuFeS,	Partial oxidation of sulphide ore	
	Cuprite, Cu ₂ O	$2Cu_{0}O + Cu_{0}S \longrightarrow 6Cu + SO_{2}$	
Tin	Cassiterite, SnO ₂	Reduction of SnO ₂ with carbon	
	-	$SnO_2 + 2C \longrightarrow Sn + 2CO$	
Lead	Galena, PbS	Reduction of PbO with carbon	
		$PbO + C \longrightarrow Pb + CO$	
Silver	Argentite, Ag,S	Hydrometallurgy	
	Native silver	$Ag_{S}S + 4NaCN \longrightarrow 2NaAg(CN)_{2} + Na_{2}S$	
		$2NaAg(CN)_2 + Zn \longrightarrow Na_2Zn(CN)_4 + 2Ag$	

Timportant alloys and their components

Alloy Components		Alloy	Components
Brass	Cu + Zn	Gun metal	Cu + Sn + Zn
Bronze	Cu + Sn	Muntz metal	Cu + Zn
Bell metal	Cu + Sn	Magnalium	Al + Mg
Coin alloys (red)	Cu + Zn + Sn	Solder	Pb + Sn
Coin alloys (white)	Cu + Ag + Zn + Ni	Type metal	Pb + Sb + Sn
Duralumin	Al + Cu + Mg + Mn	Wood metal	Bi + Pb + Sn + Cd
Electron	Mg + Zn (95 : 5)		(low m.pt. 71°C)
German silver	Cu + Zn + Ni	Y alloy	Cu + Al

THE P-BLOCK ELEMENTS (GROUP 15 TO 18)

- □ The electronic configuration of *p*-block elements is $ns^2np^{3 \text{ to } 6}$ (*n* = 2 to 7).
- □ Order of basicity is SbH₂ < AsH₂ < PH₂ < NH₂
- □ The bond angle decreases in the order $NH_3 > PH_3 > AsH_3 > SbH_3$.
- Oxyacid strength of nitrogen acids is
 H₂N₂O₂ < HNO₂ < HNO₃ < HNO₄
- □ Order of acidic character of hydride is $H_2O < H_2S < H_2Se < H_2Te$.

 Bond angle in hydrides shows the following order. They have V-shape structure.

> $H_2O > H_2S > H_2Se > H_2Te$ 104.5° 92.2° 91.0° 90°

- □ Reducing nature has order
 - $H_2O < H_2S < H_2Se < H_2Te < H_2Po.$
- □ The increasing order of acidic nature of trioxide is

$$\text{TeO}_3 < \text{SeO}_3 < \text{SO}_3.$$

□ The order of strength of oxyacids of lower oxidation state (+4) is

$$H_2TeO_3 < H_2SeO_3 < H_2SO_3$$

Chemistry

□ The order of strength of oxyacids of higher oxidation state (+6) is

 $H_2 TeO_4 < H_2 SeO_4 < H_2 SO_4.$

- All these elements form hydracids and order of strength of these acids is HF < HBr < HCl < HI.
- □ The order of reducing character is HF < HBr < HCl < HI.
- □ Acid strength of oxyacids with some halogens increases with increase in oxidation number of halogen atom.

 $HOCl < HClO_2 < HClO_3 > HClO_4.$

Among the oxyacids of different halogens acid strength decreases with increase in atomic number.
 HCIO > HBrO > HIO (hypohalous acids)
 HCIO₃ > HBrO₃ > HIO₃ (halic acids)

 $HClO_4 > HBrO_4 > HIO_4$ (perhalic acids)

- □ Increasing order of electron affinity is I < F < Br < CI
- □ Increasing order of electronegativity is I < Br < Cl < F.

THE *d*-AND *f*-BLOCK ELEMENTS

- □ General electronic configuration of the transition elements is $(n 1)d^{1-10}ns^{0-2}$ where *n* is the outermost shell.
- □ Magnetic moment (μ) = $\sqrt{n(n+2)}$ BM where *n* = no. of unpaired electrons.
- □ The general electronic configuration of lanthanoids is

 $4f^n(n = 1 \text{ to } 14)5d^{0-1} 6s^2.$

□ The electronic configuration of actinoids is [Rn] $5f^{0.14}$, $6d^{0.2}$, $7s^2$ where [Rn] stands for radon core.

COORDINATION COMPOUNDS

The ligands can be arranged in ascending order of crystal field splitting ∆ and this series is called the spectrochemical series.
 I⁻ < Br⁻ < Cl⁻ < S²⁻ < NO₃⁻ < F⁻ < OH⁻ < EtOH < Oxalate < H₂O < py < NH₃ < en <

Chemistry

dipyridyl < *o*-phenanthroline < NO₂[−] < CN[−] < CO

$$\Box \qquad \Delta_t = \frac{4}{9} \Delta_o$$

□ CFSE = $(-0.4x + 0.6y)\Delta_o$ where, x = no. of electrons occupying t_{2g} orbitals

y = no. of electrons occupying e_g orbitals.

EAN = Atomic number of the metal – No. of electrons lost in ion formation + No. of electrons gained from the donar atoms of the ligands.

HALOALKANES AND HALOARENES

- □ The general formula is R X or $C_n H_{2n+1} X$ where R = alkyl group; X = Cl, Br or I.
- □ The order of reactivity of alkyl halides is *R*I > *R*Br > *R*Cl.
- □ For the same alkyl group, the boiling point of alkyl halides increase in the following order :

$$R - I > R - Br > R - Cl > R - F.$$

- □ Reactivity of halides towards S_N1 mechanism is 3° > 2° > 1°.
- □ Reactivity of halides towards S_N^2 mechanism is $1^\circ > 2^\circ > 3^\circ$.
- □ The ease of formation of a Grignard reagent for a given alkyl group follows the order: Iodide > Bromide > Chloride
- □ Total number of optical isomers = 2^n where n = no. of asymmetric carbon atom. (In general)
- □ Total number of optical isomers = $2^{(n-1)} + 2^{(n/2-1)}$

where n = No. of asymmetric carbon atom is even.

□ Total number of optical isomers = $2^{(n-1)}$ n = No. of asymmetric carbon atom is odd.

ALCOHOLS, PHENOLS AND ETHERS

□ Monohydric alcohols have general formula $C_n H_{2n+1}$ OH.

- □ Dihydric alcohols have general formula $C_n H_{2n+2} O_2$ or $(CH_2)_n (OH)_2$.
- Order of reactivity for O H cleavage is Primary > Secondary > Tertiary
- Order of reactivity for C O cleavage is Tertiary > Secondary > Primary
- □ Order of reactivity for alcohols CH₂OH > 1° > 2° > 3°
- Victor Meyer Test
- Primary alcohols produce a blood red colour.
- □ Secondary alcohols produce blue colour.
- □ Tertiary alcohols produce no colour.
- Oxidation of alcohols
- □ Primary alcohol [0] → aldehydes [0] → carboxylic acids (same number of carbon atoms as the parent alcohol)
- $\Box \quad \text{Secondary alcohol} \xrightarrow{[O]} \rightarrow$

```
Ketones [O] Acids
(same number (less number
of carbon atom) of carbon atoms)
```

Reducing nature of different reagents

	Tertiary	alcohol	$\xrightarrow{[0]}$
--	----------	---------	---------------------

Ketones $\xrightarrow{[O]}$ Acids (Less number of carbon atoms as the parent alcohol)

- Lucas reagent is a solution of HCl with ZnCl₂, with Lucas reagent,
- □ Primary alcohol no cloudness
- □ Secondary alcohol cloudness in 5 minutes
- □ Tertiary alcohol cloudness immediately

☞ Nature of Different types of alcohols

Types	Composition
Absolute alcohol	100% ethanol
Rectified spirit	95% alcohol + 5% water
Denatured spirit	95% ethanol + 5% methanol
Methylated spirit	90% ethanol + 9% methanol + 1% other poisonous substances
Power alcohol	80% petrol + 20% absolute alcohol

Conversions	LiAlH ₄ /ether	NaBH ₄ /C ₂ H ₅ OH	H ₂ /Metal	B ₂ H ₆ /THF
$CHO \longrightarrow CH_2OH$	✓	✓	✓	✓
$>$ co \rightarrow >CHOH	~	✓	1	1
$\text{COOH} \longrightarrow \text{CH}_2\text{OH}$	1	×	×	1
$COC1 \longrightarrow CH_2OH$	1	✓	×	1
$(\text{RCO})_2\text{O} \longrightarrow \text{RCH}_2\text{OH}$	✓	×	1	✓
$COOR \longrightarrow CH_2OH$	✓	×	✓	✓
$>C=C \longrightarrow >CH-CH <$	×	×	~	✓

- □ Ethers are organic compounds in which two alkyl groups are attached to an oxygen atom and have general formula R O R or R O R'.
- According to IUPAC names, ethers are called alkoxy hydrocarbons.

ALDEHYDES, KETONES AND CARBOXYLIC ACID

Aldehydes are compounds of the general formula RCHO and ketones are compounds of the general formula RCOR'. The groups R and R' may be aliphatic or aromatic.

Chemistry

- □ IUPAC names of carboxylic acids are derived from alkanes by replacing the terminal **e** by the suffix **oic** acid.
- ☞ Important Saturated Dicarboxylic Acids

Formula	Common name	IUPAC name
1. HOOC COOH	Oxalic acid	Ethanedioic acid
2. HOOC-CH ₂ -COOH	Malonic acid	Propanedioic acid
3. HOOC(CH ₂) ₂ COOH	Succinic acid	Butanedioic acid

4. HOOC(CH ₂) ₃ COOH	Glutaric acid	Pentanedioic acid
5. HOOC(CH ₂) ₄ COOH	Adipic acid	Hexanedioic acid
6. HOOC(CH ₂) ₅ COOH	Pimelic acid	Heptanedioic acid
7. HOOC(CH ₂) ₆ COOH	Suberic acid	Octanedioic acid
8. HOOC(CH ₂) ₇ COOH	Azelaic acid	Nonanedioic acid
9. HOOC(CH ₂) ₈ COOH	Sebacic acid	Decanedioic acid.

Some Important Reactions

	Name of reaction	Starting material	Reagent and other	Application (used in)
			condition, if any	
1.	Wurtz reaction	2 moles of alkyl	Metallic Na, dry ether	Alkanes
		halides (RX)		
2.	Friedel- Crafts	C ₆ H ₆ +RX or RCOCl	Anhydrous AlCl ₃	Alkyl benzenes
	reaction			and acyl benzenes
3.	Kolbe electrolytic	Sod. or Pot. salt of carboxylic acids	Electrolysis	alkanes, alkenes, alkynes
4.	Williamson	Alkyl halides (RX)	Heat	Ether
	synthesis	+ alkoxides (RONa)		
5.	Clemmensen	Aldehyde or ketone	Amalgamated zinc	Hydrocarbons
	reduction	(> C = O)	(Zn-Hg) and conc. HCl	
6.	Rosenmund	Acid chlorides	H_2 in presence of	Aldehydes
	reduction	(RCOCI)	Pd/BaSO ₄ and quinoline	
7.	Cannizzaro	Aldehydes not having	Aq. of alc. alkali	Alcohol + Acid
	reaction	α -hydrogen atom		
8.	Tischenko reaction	All Aldehydes	Aluminium ethoxide Al $(OC_2H_3)_3$	Esters
9.	Aldol condensation	Aldehydes having	Strong solution of	Resin
		α - hydrogen atom	alkali	
10.	Benzoin	Aromatic aldehydes	KCN	Benzoin
	condensation			
11.	Haloform	CH ₃ CHO, methyl ketones	Alkaline halogen	Haloform (test of -COCH,
	reaction	(CH ₃ CO–), CH ₃ CH ₂ OH	(NaOH + X_2) or	group)
		and RCHOHCH ₃	Sod. hypohalites (NaOX)	
12.	Kolbe-Schmidt	Phenol (C ₆ H ₅ OH)	CO ₂ , 125°C, 5-7 atm.	Salicylic acid
	reaction			

Chemistry

12	Reimer -Tiemann	— — — — — — — — — — Phenol		Soliovlaldahyda on
15.		Phenoi	CHCl ₃ or CCl ₄ (NaOH)	Salicylaldehyde or
	reaction			Salicylic acid (Asprin)
14.	Hofmann-bromamide	Acid amides (-CONH ₂)	$Br_2 + Alkali$	Primary amines
	reaction			
15.	Carbylamine	Primary amines (- NH ₂)	CHCl ₃ + Alkali	Carbylamine (test or
	reaction			-NH ₂ group)
16.	Diazotisation	Aromatic primary	Conc. HCl,	Benzenediazonium
		amines	NaNO,-HCl, 0-5°C	salts.
17.	Sandmeyer	Benzenediazonium	CuCl–HCl,	Halogenobenzenes
	reaction	salts	CuBr - Br, CuCN	
18.	Gattermann	Benzenediazonium	Cu powder + HCl	Halogenobenzenes
	reaction	salts	_	
19.	Coupling reaction	Benzenediazonium	Alkali (in case of phenol),	Azo-dyes (detection
		salt + Phenol or aniline	acid (in case of aniline),	of phenolic and amino
			low temp.	group)
			p.	0r)

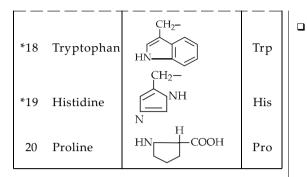
AMINES

- Aliphatic amine are called as alkanamines in which 'e' of alkane is replaced by amine. where X⁻ = Cl⁻, Br⁻, etc.
- □ Basicity of Amines

Nature of alkyl group	Order of basic strength
— CH ₃ (methyl group)	$2^{\circ} > 1^{\circ} > 3^{\circ} > NH_{3}$
$-CH_2-CH_3$ (ethyl group)	$2^{\circ} > 1^{\circ} > NH_{3} > 3^{\circ}$
— CH— CH ₃ CH ₃	$1^{\circ} > NH_{_3} > 2^{\circ} > 3^{\circ}$ amine
(<i>iso</i> -propyl group) — C(CH ₃) ₃ (<i>tert</i> -butyl group)	NH ₃ > 1° > 2° > 3° amine

□ Diazonium salts General formula : $ArN_2^+X^$ where $X^- = Cl^-$, Br^- , etc

BIOMOLECULES


- □ The name 'carbohydrate' was given as earlier studies of these compounds led to their being classified as "hydrates of carbon", with general formula C_x(H₂O)_y.
- □ There are about 20 amino acids which make up the bioproteins. Out of these 10 amino

acids (*non-essential*) are synthesised by our bodies and rest are essential in the diet (*essential amino acids*) and supplied to our bodies by food which we take because they cannot be synthesised in the body.

	Name of amino acid	Structure of R	Three letter symbol		
1	Glycine	-Н	Gly		
2	Alanine	-CH ₃	Ala		
*3	Valine	$-CH(CH_3)_2$	Val		
*4	Leucine	-CH,CH(CH ₃),	Leu		
*5	Isoleucine	- CH- CH ₂ CH ₃ CH ₃	Ile		
*6	Arginine	– (CH ₂) ₃ NH– C – NH ₂ NH	Arg		
*7	Lysine	$-(CH_2)_4NH_2$	Lys		
8	Glutamic acid	-CH,CH,COOH	Glu		
9	Aspartic acid	-CH,COOH	Asp		
10	Glutamine	-CH,CH,CONH,	Gln		
11	Asparagine	CH,CONH,	Asn		
*12	Threonine	-CHOH.CH ₃	Thr		
13	Serine	-CH ₂ OH	Ser		
14	Cysteine	-CH ₂ SH	Cys		
*15	Methionine	-CH,CH,SCH	Met		
*16	Phenylalan-ine	$-CH_{5}C_{6}H_{5}$	Phe		
17	Tyrosine	$-CH_2C_6H_4OH(p)$	Tyr		

Chemistry

*Essential aminoacid

 □ Base + Sugar = Nucleoside Base + Sugar + Phosphate = Nucleotide
 □ For RNA, ribose (sugar) + uracil (base) = Nucleoside.

For DNA, deoxyribose (sugar) + thymine (base)
 = Nucleoside.

Some common enzymes

Enzymes	Reactions which is catalysed	
Amylase	Starch $\rightarrow n \times$ glucose	
Maltase	Maltose \rightarrow 2 × glucose	
Lactase	Lactose \rightarrow glucose + galactose	
Invertase	Sucrose \rightarrow glucose + fructose	
Pepsin	Proteins \rightarrow Amino acid	
Trypsin	Proteins \rightarrow Amino acid	
Nucleases	DNA, RNA \rightarrow Nucleotides	
Urease	$Urea \rightarrow NH_3 + CO_2$	
Carbonic	$H_2CO_3 \rightarrow CO_2 + H_2O$	
anhydrase		

POLYMER

□ Number average molecular mass (\overline{M}_N)

$$=\frac{N_1M_1+N_2M_2+N_3M_3+.....}{N_1+N_2+N_3+....}$$

Where N_1 , N_2 , N_3 are the number of molecules with molecular masses M_1 , M_2 , M_3 respectively.

or
$$\overline{M}_N = \frac{\sum (N_i M_i)}{\sum N_i}$$

Where N_i is the number of molecules of the i^{th} type with molecular mass M_i .

Chemistry

Weight average molecular mass (\overline{M}_w)

$$=\frac{m_1M_1+m_2M_2+m_3M_3+\dots}{m_1+m_2+m_3+\dots}$$

Where $m_{1'}, m_{2'}, m_3$ are the masses of species with molecular mass $M_{1'}, M_{2'}, M_3$ respectively, then the weight average molecular mass is

or
$$\overline{M}_{w} = \frac{\sum (m_{i}M_{i})}{\sum m_{i}}$$

But $m_{i} = N_{i}M_{i'}$ so that $\overline{M}_{w} = \frac{\sum (N_{i}M_{i}^{2})}{\sum (N_{i}M_{i})}$

- Dely dispersity index (PDI)
 - $=\frac{\text{Weight average molecular mass}}{\text{Number average molecular mass}} = \frac{\overline{M}_w}{\overline{M}_n}$

CHEMISTRY IN EVERYDAY LIFE

 Therapeutic index (TI)
 = Maximum tolerated dose (MTD) Maximum curative dose (MCD)

Chemicals in cosmetics

Chemical	Cosmetics
Acetone :	Cologne, nail enamel remover
Banzaldehyde :	Perfumes, cologne, hair spray, vaseline, shaving cream, shampoo, soaps
Benzyl acetate :	Perfumes, detergent, soaps, after shave lotions, deodorants
Benzyl alcohol :	Cologne, nail enamel remover, fabric softener
Camphor :	Perfumes, shaving cream, nail polish
Methylene chloride :	Shampoo, cologne
Ethanol :	Shampoo, hair spray, perfumes, shaving creams

Toluene	: Lacquers and nail moisturizers	Linalool : Perfumes, bar soaps, hand lotions
Benzoic acid	: Cream and lotion	Terpinene : Cologne, perfume, air
Cetyl alcohol	: Moisturising cream,	freshener
5	lotions	Terpineol : Perfumes and cologne
Hydroquinone	: Moisturising cream	<i>p</i> -Chlorometaxylenol : Deodorants
		Dichlorometaxylenol: Deodorants

 $\odot \odot \odot \odot$

